Stephanie and Damine Tulloch's Family
Stephanie seems to resemble Europeans.
Stephanie seems to resemble Europeans.
Haplogroup T | |
---|---|
Possible time of origin | 25,149 ± 4,668 years before present |
Possible place of origin | Near East |
Ancestor | JT |
Descendants | T1 and T2 |
Defining mutations | G709A, G1888A, A4917G, G8697A, T10463C, G13368A, G14905A, A15607G, G15928A, C16294T |
Eliza Lucinda Blue Brown, my mother's mother, died of a stroke.
She had high blood pressure.
She had high blood pressure.
Haplogroup T (mtDNA)
NOTE: This article is about the mtDNA Haplogroup T. For the unrelated Y-Chromosome Haplogroup T-M184, see Haplogroup T-M184.
Haplogroup T is a human mitochondrial DNA (mtDNA) haplogroup. It is believed to have originated around 25,000 years ago in the Near East.
Origins
Mitochondrial haplogroup T derives from the haplogroup J'T, which also gave rise to mtDNA haplogroup J. The T clade is thought to have emanated from the Near East (Bermisheva 2002).
Distribution
Basal haplogroup T* is found among Algerians in Oran (1.67%) and Reguibate Sahrawi (0.93%). It is also distributed among the Socotri (1.2%).
Haplogroup T is a widespread haplogroup throughout Western and Central Eurasia with varying degrees of prevalence and certainly might have been present in other groups from the surrounding areas. T is found in approximately 10% of native Europeans. It is also common among modern day Iranians. Based on a sample of over 400 modern day Iranians (Kivisild and Metspalu 2003), the T haplogroup represents roughly 8.3% of the population (about 1 out of 12 individuals), with the more specific T1 subtype constituting roughly half of those. Furthermore, the specific subtype T1 tends to be found further east and is common in Central Asian and modern Turkic populations (Lalueza-Fox 2004), who inhabit much of the same territory as the ancient Saka, Sarmatian, Andronovo, and other putative Iranian peoples of the 2nd and 1st millennia BC. Lalueza-Fox et al. (2004) also found several T and T1 sequences in ancient burials, including Kurgans, in the Kazakh steppe between the 14th-10th centuries BC, as well as later into the 1st millennia BC. These coincide with the latter part of the Andronovo period and the Saka period in the region.
The geographic distribution within subclade T2 varies greatly with the ratio of subhaplogroup T2e to T2b reported to vary 40-fold across examined populations from a low in Britain and Ireland, to a high in Saudi Arabia (Bedford 2012). Within subhaplogroup T2e, a very rare motif is identified among Sephardic Jews of Turkey and Bulgaria and suspected conversos from the New World (Bedford 2012). Found in Svan population from Caucasus (Georgia) T* 10,4% and T1 4,2%. T1a1a1 is particularly common in countries with high levels of Y-haplogroup R1a, such as Central and Northeast Europe, but also everywhere in Central Asia and deep into North Asia, as far east as Mongolia.
T2 is also found among the Socotri (7.7%).
Archaeology
Wilde et al. (2014) tested mtDNA samples from the Yamna culture, the presumed homeland of Proto-Indo-European speakers. They found T2a1b in the Middle Volga region and Bulgaria, and T1a both in central Ukraine and the Middle Volga. The frequency of T1a and T2 in Yamna samples were each 14.5%, a percentage higher than in any country today and only found in similarly high frequencies among the Udmurts of the Volga-Ural region.
Africa
In Africa, haplogroup T is primarily found among Afro-Asiatic-speaking populations, including the basal T* clade.Some non-basal T clades are also commonly found among the Niger-Congo-speaking Serer due to diffusion from the Maghreb, likely with the spread of Islam and urban civilizations.
[hide]Population | Location | Language Family | N | Frequency | Source |
---|---|---|---|---|---|
Amhara | Ethiopia | Afro-Asiatic > Semitic | 5/120 | 4.17% | Kivisild 2004 |
Beja | Sudan | Afro-Asiatic > Cushitic | 1/48 | 2.1% | Hassan 2009 |
Beta Israel | Ethiopia | Afro-Asiatic > Cushitic | 0/29 | 0.00% | Behar 2008a |
Copt | Egypt | Afro-Asiatic > Egyptian | 5/29 | 17.2% | Hassan 2009 |
Dawro K. | Ethiopia | Afro-Asiatic > Omotic | 2/137 | 1.46% | Castrì 2008 and Boattini 2013 |
Egyptians (El-Hayez) | Egypt | Afro-Asiatic > Semitic | 10/35 | 28.6% | Kujanova 2009 |
Ethiopia | Ethiopia | Undetermined | 2/77 | 2.60% | Soares 2011 |
Ethiopian Jew | Ethiopia | Afro-Asiatic > Cushitic | 0/41 | 0.00% | Non 2011 |
Gurage | Ethiopia | Afro-Asiatic > Semitic | 0/21 | 0.00% | Kivisild 2004 |
Hamer | Ethiopia | Afro-Asiatic > Omotic | 0/11 | 0.00% | Castrì 2008 and Boattini 2013 |
Ongota | Ethiopia | Afro-Asiatic > Cushitic | 0/19 | 0.00% | Castrì 2008 and Boattini 2013 |
Oromo | Ethiopia | Afro-Asiatic > Cushitic | 0/33 | 0.00% | Kivisild 2004 |
Tigrai | Ethiopia | Afro-Asiatic > Semitic | 3/44 | 6.82% | Kivisild 2004 |
Daasanach | Kenya | Afro-Asiatic > Cushitic | 0/49 | 0.00% | Poloni 2009 |
Elmolo | Kenya | Afro-Asiatic > Cushitic | 0/52 | 0.00% | Castrì 2008 and Boattini 2013 |
Luo | Kenya | Nilo-Saharan | 0/49 | 0.00% | Castrì 2008 and Boattini 2013 |
Maasai | Kenya | Nilo-Saharan | 0/81 | 0.00% | Castrì 2008 and Boattini 2013 |
Nairobi | Kenya | Niger-Congo | 0/100 | 0.00% | Brandstatter 2004 |
Nyangatom | Kenya | Nilo-Saharan | 0/112 | 0.00% | Poloni 2009 |
Rendille | Kenya | Afro-Asiatic > Cushitic | 0/17 | 0.00% | Castrì 2008 and Boattini 2013 |
Samburu | Kenya | Nilo-Saharan | 0/35 | 0.00% | Castrì 2008 and Boattini 2013 |
Turkana | Kenya | Nilo-Saharan | 0/51 | 0.00% | Castrì 2008 and Boattini 2013 |
Hutu | Rwanda | Niger-Congo | 0/42 | 0.00% | Castrì 2009 |
Dinka | Sudan | Nilo-Saharan | 0/46 | 0.00% | Krings 1999 |
Sudan | Sudan | Undetermined | 3/102 | 2.94% | Soares 2011 |
Burunge | Tanzania | Afro-Asiatic > Cushitic | 0/38 | 0.00% | Tishkoff 2007 |
Datoga | Tanzania | Nilo-Saharan | 1/57 | 1.75% | Tishkoff 2007 and Knight 2003 |
Iraqw | Tanzania | Afro-Asiatic > Cushitic | 0/12 | 0.00% | Knight 2003 |
Sukuma | Tanzania | Niger-Congo | 0/32 | 0.00% | Tishkoff 2007 and Knight 2003 |
Turu | Tanzania | Niger-Congo | 0/29 | 0.00% | Tishkoff 2007 |
Yemeni | Yemen | Afro-Asiatic > Semitic | 1/114 | 0.88% | Kivisild 2004 |
Asia
Europe
Subclades
Tree
This phylogenetic tree of haplogroup I subclades is based on the paper (van Oven 2008) and subsequent published research (Behar 2012b). For brevity, only the first three levels of subclades (branches) are shown.
- T
- T1
- T1a
- T1a1
- T1b
- T1a
- T2
- T2a
- T2a1
- T2b
- T2b1
- T2b2
- T2b3
- T2b4
- T2b5
- T2b6
- T2c
- T2c1
- T2d
- T2e
- T2e2
- T2f
- T2f1
- T2g
- T2a
- T1
Health Issues
My family is plagued by high blood pressure and heart problems. One study has shown Haplogroup T to be associated with increased risk for coronary artery disease (Sanger 2007). However, some studies have also shown that people of Haplogroup T are less prone to diabetes (Chinnery 2007 and González 2012).
A few tentative medical studies have demonstrated that Haplogroup T may offer some resistance to both Parkinson's disease and Alzheimer's disease.
One study has found that among the Spanish population, Hypertrophic CardioMyopathy (HCM) also referred to as Hypertrophic Obstructive CardioMyopathy or HOCM is more likely to happen in those of T2 ancestry than those in other maternal haplogroups. It is unknown whether or not this is specific to this subclaude of haplogroup T or is a risk factor shard by all of haplogroup T. With a statistically significant difference found in such a small sample, it may be advisable for those of known haplogroup T maternal ancestry to be aware of this and have their physician check for evidence of this condition whan having a routine exam at an early age. It is usually symptom-less and increases the risk of sudden cardiac death, which often happens to those of as early in life as teenagers and may affect those who are active and have no other risk factors.
Certain medical studies had shown mitochondrial Haplogroup T to be associated with reduced sperm motility in males, although these results have been challenged (Mishmar 2002). According to the Departamento de Bioquimica y Biologica Molecular y Celular, Universidad de Zaragoza, Haplogroup T can predispose to asthenozoospermia (Ruiz-Pesini 2000). However, these findings have been disputed due to a small sample size in the study (Mishmar 2002).
Famous Members
Nicholas II of Russia
The last Russian Tsar, Nicholas II, has been shown to be of Haplogroup T, specifically subclade T2 (Ivanov 1996). Assuming all relevant pedigrees are correct, this includes all female-line descendants of his female line ancestor Barbara of Celje (1390-1451), wife ofSigismund, Holy Roman Emperor. This includes a great number of European nobles, including George I of Great Britain and Frederick William I of Prussia (through the Electress Sophia of Hanover), Charles I of England, George III of the United Kingdom, George V of the United Kingdom, Charles X Gustav of Sweden, Gustavus Adolphus of Sweden, Maurice of Nassau, Prince of Orange, Olav V of Norway, and George I of Greece. Many European royals have been found to be of this mtDNA Haplogroup, in addition toHaplogroup H (mtDNA).[citation needed]